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BACKGROUND. The lack of specific delivery of photosensitizers (PSs), represents a
significant limitation of photodynamic therapy (PDT) of cancer. The biomarker prostate-
specific membrane antigen (PSMA) has attracted considerable attention as a target for imaging
and therapeutic applications for prostate cancer. Although recent efforts have been made to
conjugate inhibitors of PSMA with imaging agents, there have been no reports on PS-conjugated
PSMA inhibitors for targeted PDT of prostate cancer. The present study focuses on the use of
a PSMA inhibitor-conjugate of pyropheophorbide-a (Ppa-conjugate 2) for targeted PDT to
achieve apoptosis in PSMAþ LNCaP cells.
METHODS. Confocal laser scanning microscopy with a combination of nuclear staining
and immunofluorescence methods were employed to monitor the specific imaging and
PDT-mediated apoptotic effects on PSMA-positive LNCaP and PSMA-negative (PC-3) cells.
RESULTS. Our results demonstrated that PDT-mediated effects by Ppa-conjugate 2 were
specific to LNCaP cells, but not PC-3 cells. Cell permeability was detected as early as 2 hr by
HOE33342/PI double staining, becoming more intense by 4 hr. Evidence for the apoptotic
caspase cascade being activated was based on the appearance of poly-ADP-ribose polymerase
(PARP) p85 fragment. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)
assay detected DNA fragmentation 16 hr post-PDT, confirming apoptotic events.
CONCLUSIONS. Cell permeability by HOE33342/PI double staining as well as PARP p85
fragment and TUNEL assays confirm cellular apoptosis in PSMAþ cells when treated with PS-
inhibitor conjugate 2 and subsequently irradiated. It is expected that the PSMA targeting small-
molecule of this conjugate can serve as a delivery vehicle for PDT and other therapeutic
applications for prostate cancer. Prostate 69: 585–594, 2009. # 2009 Wiley-Liss, Inc.
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INTRODUCTION

Photodynamic therapy (PDT) has emerged as a non-
invasive regimen for cancer treatment thus represent-
ing an attractive alternative to conventional therapies
[1–8]. Furthermore, PDT can be employed for both
therapeutic and imaging purposes when the photo-
sensitizer (PS) fluoresces in the near-IR range [9].
Despite its promise, PDT is not yet an integral part of
clinical cancer therapy practice due to limitations
associated with selective tumor targeting [10]. While
early-phase clinical trials for prostate cancer indicate
that PDT shows potential as a safe treatment option for
localized, recurrent disease [10], there remains a need
to enhance the targeting capabilities of PSs.

In light of this need, we have focused on developing
a method for the targeted delivery of PSs for the
selective abrogation of prostate cancer cells. Specifi-
cally, we have designed chemical agents that exhibit
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high affinity and specificity for the prostate cancer bio-
marker, prostate-specific membrane antigen (PSMA).
PSMA is a type II glycoprotein commonly found on
the surface of tumor cells of late stage, androgen-
independent, and metastatic prostate cancer [11]. In
prostate cancer cells, PSMA is expressed at 1,000-fold
higher levels than in normal prostate epithelium [12].
Expression levels increase with disease progression,
being highest in metastatic disease, hormone refractory
cancers, and higher-grade lesions [12]. Endothelial-
expression of PSMA in the neovasculature of a variety
of non-prostatic solid malignancies has also been
detected [13,14]. Therefore, it is not surprising that
PSMA has attracted significant attention as a biomarker
and target for the delivery of imaging [15–30] and
therapeutic agents [31–34].

We previously reported that phosphoramidate
peptidomimetic PSMA inhibitors were capable of both
cell-surface labeling of prostate cancer cells and intra-
cellular delivery [35]. In this current study, we describe
the conjugation of a peptidomimetic inhibitor of PSMA
to the porphyrinic PS, pyropheophorbide-a (Ppa;
Fig. 1). Pyropheophorbide-a has been shown to be a
potent PS in PDT experiments but alone, it lacks the
specificity to effectively target cancer cells [36–38].
In addition, we reveal the capability of Ppa-conjugate
2 to selectively induce apoptosis of prostate cancer
cells in vitro. Cellular effects related to apoptosis after
PDT were determined by nuclear staining, poly-ADP-
ribose polymerase (PARP) p85 fragment immuno-
fluorescence, and the terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) assay,
as detected by fluorescence imaging using confocal
laser scanning microscopy.

MATERIALSANDMETHODS

Cell Lines,Reagents, andGeneral Procedures

LNCaP and PC-3 cells were obtained from the
American Type Culture Collection (Manassas, VA).
The rabbit polyclonal anti-PARP p85 antibody and
goat anti-rabbit IgG-FITC were obtained from Sigma–
Aldrich (St. Louis, MO). Normal goat serum was

obtained from BioGenex (San Ramon, CA). 40,6-
Diamidino-2-phenylindol dihydrochloride (DAPI)
and Hoechst 33342 (HOE33342) were obtained from
Invitrogen-Molecular Probes. Propidium iodide (PI)
was obtained from MP Biomedicals, LLC (Solon, OH).
DeadEnd Fluorometric TUNEL System was obtained
from Promega (Madison, WI). Ppa was obtained from
Frontier Scientific, Inc. (Logan, UT). All other chemicals
and cell-culture reagents were purchased from Fisher
Scientific (Sommerville, NJ), Pierce (Rockford, IL), or
Sigma–Aldrich. All solvents used in chemical reactions
were anhydrous and obtained as such from commercial
sources. All other reagents were used as supplied
unless otherwise stated. 1H, 13C, and 31P NMR spectra
were recorded on a Bruker DRX 300 MHz NMR
Spectrometer. 1H NMR chemical shifts are relative to
TMS (d¼ 0.00 ppm), CDCl3 (d¼ 7.26 ppm). 13C NMR
chemical shifts are relative to CDCl3 (d¼ 77.23 ppm).
31P NMR chemical shifts in CDCl3 was externally
referenced to 85% H3PO4 (d¼ 0.00 ppm) in CDCl3.

Preparation of Ppa-Conjugate 2

The NHS ester of Ppa (Ppa-NHS) was prepared as
previously described [36]. A solution of Ppa-NHS ester
(6 mmol) in 100 ml DMSO was added to a stirred solution
of the inhibitor core 1 (2 mmol, 100 ml of 20 mM in H2O),
160 ml H2O, and 40 ml of 1 M NaHCO3. The reaction
mixture was stirred for 6 hr in the dark at room
temperature. The pH of the resulting solution was then
adjusted to 9.3 by the addition of 8 ml of 1 M Na2CO3.
The unreacted inhibitor core 1 was scavenged by
stirring with 25 mg of Si–Isocyanate resin (SiliCycle,
Inc., Quebec, Canada) overnight at room temperature.
The solution was subsequently centrifuged (9,000 rpm,
10 min) and the supernatant was lyophilized in a 2 ml
microcentrifuge tube. Unreacted and/or hydrolyzed
Ppa-NHS was removed by successively triturating the
lyophilized solid with 1 ml portions of DMSO and
centrifuging the mixture (1 min at 13,000 rpm) after
each wash; this process was repeated 10 times. The
Ppa-conjugated inhibitor 2 was dissolved in 50 mM Tris
buffer (pH 7.5) to give a final concentration of 2 mM
(approximately 800 ml).
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Fig. 1. Structuresofphosphoramidatepeptidomimetic inhibitorcore1,Ppa, anditsPpa-conjugate2.
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IC50 Determination for Ppa-Conjugate 2

Inhibition studies were performed as described
previously with only minor modifications [35,39].
Working solutions of the substrate (N-[4-(phenylazo)-
benzoyl]-glutamyl-g-glutamic acid, PABGgG) and
inhibitor were made in TRIS buffer (50 mM, pH 7.4).
Working solutions of purified PSMA were diluted
in TRIS buffer (50 mM, pH 7.4 containing 1% Triton
X–100) to provide from 15% to 20% conversion of
substrate to product in the absence of inhibitor. A
typical incubation mixture (final volume 250 ml) was
prepared by the addition of either 25 ml of an inhibitor
solution or 25 ml TRIS buffer (50 mM, pH 7.4) to 175 ml
TRIS buffer (50 mM, pH 7.4) in a test tube. PABGgG
(25 ml, 10 mM) was added to the above solution. The
enzymatic reaction was initiated by the addition of 25ml
of the PSMA working solution. In all cases, the final
concentration of PABGgG was 1 mM while the enzyme
was incubated with five serially diluted inhibitor
concentrations providing a range of inhibition from
10% to 90%. The reaction was allowed to proceed
for 15 min with constant shaking at 378C and was
terminated by the addition of 25 ml methanolic TFA (2%
trifluoroacetic acid by volume in methanol) followed
by vortexing. The quenched incubation mixture was
quickly buffered by the addition of 25 ml K2HPO4

(0.1 M), vortexed, and centrifuged (10 min at 7,000g).
An 85 ml aliquot of the resulting supernatant was
subsequently quantified by HPLC as previously
described [40,41]. IC50 values were calculated using
KaleidaGraph 3.6 (Synergy Software).

InVitro PhotodynamicTherapy Experiments

PSMA-positive (PSMAþ) cells (LNCaP) and PSMA-
negative (PSMA�) cells (PC-3) were grown in T-75
flasks with complete growth medium [RPMI 1640
containing 10% heat-inactivated fetal calf serum
(FBS), 100 U of penicillin and 100 mg/ml streptomycin]
in a humidified incubator at 378C and 5% CO2.
Confluent cells were detached with a 0.25% trypsin
0.53 mM EDTA solution, harvested, and plated in two-
well slide chambers at a density of 4� 104 cells/well.
Cells were grown for 3–4 days before conducting the
following experiments.

In vitro PDT with Ppa-conjugate 2. LNCaP and PC-3
cells grown in two-well slide chambers for 3 days were
washed twice in 378C pre-warmed medium A (phos-
phate-free RPMI 1640 containing 1% FBS), and then
incubated with 1 ml of Ppa-conjugate 2 (2.5 or 5 mM) in
pre-warmed medium A for 2.5 hr in a humidified
incubator at 378C and 5% CO2, which allowed internal-
ization of Ppa-conjugate 2 bound to PSMA to occur.

In a competitive challenge experiment, cells were pre-
incubated with 100 mM inhibitor core 1 for 30 min
prior to incubation with Ppa-conjugate 2 under the
same condition described above. Cells treated with
Ppa-conjugate 2 were washed in the 378C pre-warmed
phenol-free medium RPMI 1640 once, and then
irradiated with white light (7.5 J/cm2, with 25 mW/
cm2 fluence rate) for 10 min in pre-warmed phenol red-
free RPMI 1640. The light source was a 100-W halogen
lamp, which was filtered through both a 10 cm column
of water and filtered a Lee Primary Red filter (no. 106,
Vincent Lighting, Cleveland, OH) to remove light with
wavelengths below 600 nm.

TUNEL staining in situ. PDT-treated cells were
placed in pre-warmed normal growth medium (normal
RPMI 1640 containing 10% FBS and 1% penicillin–
streptomycin), and returned to a humidified incubator
at 378C and 5% CO2 for 16 hr and allowed to recover.
The cells were then rinsed twice in ice-cold phosphate-
buffered saline (PBS) and fixed with 4% paraformalde-
hyde in PBS for 15 min at room temperature. The fixed
cells were washed twice in cold PBS, permeabilized in
0.2% Triton X–100 solution in PBS for 5 min at room
temperature, and rinsed twice in PBS for 5 min at room
temperature. The TUNEL assay was performed accord-
ing to manufacturer’s instruction. All treated cells were
counterstained with DAPI and mounted in VECTA-
SHIELD1 Mounting Medium (Vector Laboratories,
Burlingame, CA) for microscopy.

HOE33342/PI double-staining nuclei. Following
PDT treatment with Ppa-conjugate 2 at 2.5 mM, cells
were incubated with pre-warmed normal growth
medium (standard medium RPMI 1640 containing
10% FBS, 1% penicillin–streptomycin), and allowed to
recover for 2 and 4 hr in a humidified incubator at 378C
and 5% CO2. Cells were then rinsed twice with 1 ml
of pre-warmed phosphate-free medium RPMI 1640,
and then incubated with both 1 ml of phosphate-free
medium containing 1 ml of 5 mg/ml HOE33342
(dissolved in H2O), and 1 ml of 1 mg/ml of PI (dissolved
in H2O) at room temperature for 15 min in the dark.
Subsequently, cells were washed twice in ice-cold
phosphate-free medium RPMI 1640 and once in ice-
cold KRB buffer pH 7.4 (mmol/L: NaCl 154.0, KCl 5.0,
CaCl2 2.0, MgCl2 1.0, HEPES 5.0, D-glucose 5.0). Lastly,
these cells were fixed with freshly prepared 4%
paraformaldehyde in KRB for 15 min at room temper-
ature and mounted with VECTASHIELD1 Mounting
Medium for microscopy.

Detection of PARP p85 fragment. Following PDT
treatment, cells were incubated with pre-warmed

The Prostate

Targeted PDT for Prostate Cancer 587



normal growth medium (standard RPMI 1640 contain-
ing 10% FBS, 1% penicillin–streptomycin), and allowed
to recover for 2 and 4 hr in a humidified incubator at
378C and 5% CO2. Cells were fixed and permeabilized
as described in the above protocol for the Detection of
PARP p85 fragment Section. Cells were then blocked
for 2 hr in blocking buffer (0.1% Tween-20 with 5% goat
normal serum in PBS) at room temperature, rinsed once
in PBS, incubated with the anti-PARP p85 fragment
antibody (1:100) in blocking buffer at 48C overnight,
then successively washed twice in PBS, 0.1% Tween-20
in PBS, and finally in PBS for 10 min at room temper-
ature. Finally, cells were incubated with the fluorescein
conjugate of goat anti-rabbit antibody (1:40) in 1% BSA
in PBS for 2 hr at room temperature, counterstained
with DAPI, and then mounted in VECTASHIELD1

Mounting Medium for microscopy (according to
manufacturer’s protocol; Invitrogen).

Confocal laser scanning microscopy. Cells were
visualized under a 40X oil immersion objective using
an LSM 510 META Laser Scanning Microscope with a
Diode Laser (405 nm) for DAPI or HOE33342, Ar Laser
(488 nm) for Fluorescein, and a HeNe Laser (543 nm) for
PI. The pictures were edited by National Institutes
of Health (NIH) Image J software (http://rsb.info.nih.
gov/ij) and Adobe Photoshop CS2.

RESULTS

Preparation and IC50 Evaluation of
Ppa-Conjugate 2

Ppa-conjugate 2 was prepared from 1 and Ppa-NHS
using coupling conditions described previously for
the conjugation of 1 with 5-FAM-X SE [35]. IC50 values
were determined for both the inhibitor core 1 and the
Ppa-conjugate 2 and revealed that both compounds
were potent inhibitors of PSMA using an HPLC-based
assay previously developed by our group [35,39–41].
The IC50 values for inhibitor core 1 and Ppa-conjugate 2
for PSMA purified from LNCaP cells [42] were 14 [35]
and 102 nM, respectively.

PDT-Mediated Effectsby Ppa-Conjugate 2

Specificity of PDT and Detection of Apoptotic
Cells—TUNEL Assay. DNA fragmentation following
PDT-treatment with Ppa-conjugate 2 was detected
using the TUNEL assay (Fig. 2) [43–47]. Detection of
DNA fragmentation using this assay was observed as
green fluorescent signals from cell nuclei as a result of
incorporation of fluorescein-dUTP. For these experi-
ments, concentrations of 1, 2.5, and 5 mM of Ppa-
conjugate 2 were applied to both LNCaP and PC-3 cells
prior to light administration. The PDT-treatment of
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Fig. 2. TUNELstainingofPDT-treatedcells.PDT-treatedLNCaPcellsat1,2.5,or5mMPpa-conjugate2 (A^C).PDT-treatedPC-3cellsat1,2.5,
or5mMPpa-conjugate2 (E^G).PDT-treatedLNCaPandPC-3cellswith2.5mMfreePpa(D,H),ascontrol.Cellularnucleiwerecounterstained
byDAPI.Bar scaleis20mm.
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LNCaP cells was observed to be dose-dependent while
no effect was observed for PC-3 cells (Fig. 2A–C, E–G).
No fluorescent signal from the incorporation of
fluorescein-dUTP in LNCaP cells was observed for
1 mM Ppa-conjugate 2 whereas approximately 30% and
60% of the cells gave positive results at 2.5 and 5.0 mM,
respectively. In contrast, no detectable incorporation of
fluorescein-dUTP was observed at these concentrations
in PSMA� cells (PC-3). These latter results revealed the
specificity of the Ppa-conjugate 2 toward the PSMAþ
LNCaP cells. As an additional control, unconjugated
Ppa (2.5 mM) was applied to both LNCaP and PC-3 cells
(Fig. 2. D,H). Upon light treatment of these cells, PDT-
mediated DNA fragmentation was observed in all cells
of both cell lines demonstrating the non-specificity of
unconjugated Ppa. These data demonstrate that when
coupled, inhibitor core 1 provides Ppa with specificity
for PSMAþ cells. This demonstrated specificity
addresses the targeting challenge encountered by most
conventional PSs.

Dynamics of Cell Membrane Permeability Changes
After PDT. Cell membrane permeability of LNCaP
cells following PDT treatment with Ppa-conjugate
2 was examined using the differential staining of
HOE33342 and PI. HOE33342 is a cell-permeating
nuclear counterstain preferentially used with living

and unfixed cells, while PI is a membrane-impermeable
nucleic acid stain, generally excluded from viable cells.
The deployment of both cellular stains can be used to
characterize membrane-damage in tumor cells [48]. In
negative control experiments, cells were exposed only
to light treatment and not pre-incubated with Ppa-
conjugate 2. For these control cells, only HOE33342 was
observed to enter and stain the nuclei (Fig. 3A); there
was no signal from PI (Fig. 3B). For those cells treated
with Ppa-conjugate 2 and then subjected to light
treatment, we observed that after 2 hr following light
treatment, the nuclei of the cells exhibited greater
HOE33342 staining (Fig. 3C) and a weak signal from PI
(Fig. 3D). These results suggest that as a result of PDT
treatment, the integrity of the cellular membrane was
compromised. At 4 hr post-treatment, cells displayed
greater membrane damage based on the extent of PI
staining (Fig. 3F). This time-dependent of increase in PI
staining is indicative of the controlled events associated
with apoptosis [48,49]. To confirm that the targeting
of Ppa-conjugate 2 for LNCaP cells was due to its
interactions with the PSMA biomarker, cells were
first treated with the inhibitor core 1 alone prior to
administration of Ppa-conjugate 2 (Fig. 3G,H). The lack
of PI staining in these cells (Fig. 3H) and nuclear
staining by HOE33342 (Fig. 3G) that was similar to the
control samples (Fig. 3A). These results suggest that
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Fig. 3. HOE33342/PI double staining. Post-PDT-treated LNCaP were stained by Hoechst 33342 (top panels) and propidium iodide
(bottompanels)beforefixation.ControlsA,B:4hrafterlightexposure;cellsweresubjectedto10minlightexposurebutwerenotpre-treated
withPpa-conjugate2.C^F: cellswerepre-treatedwith2.5mMPpa-conjugate 2 prior to10min lightexposure.C,D: 2hrpost-PDTtreatment.
E,F:4hrpost-PDTtreatment.G,H:4hrafterlightexposurebutfirstpre-treated30minwith100mMinhibitorcore1prior topre-treatmentwith
Ppa-conjugate2.Double-stainedcellswere fixedformicroscopy visualization.Bar scaleis20mm.
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inhibitor core 1 effectively blocked Ppa-conjugate
2 from binding to the cells thus confirming Ppa-
conjugate 2 targets LNCaP cells by binding to PSMA.

PARP Cleavage in PDT-Treated LNCaP Cells. Fol-
lowing PDT treatment of LNCaP cells with Ppa-
conjugate 2, experiments for the cytoimmunofluores-
cence detection of the p85 cleavage fragment of PARP
were performed to provide further evidence of apop-
tosis through caspace-3/7 activation. The development
of fluorescent intensity from the PARP p85 fragment
was observed to be time-dependent (Fig. 4E,H). The
cytoimmunofluorescence signals of PARP p85 frag-
ment was predominant within nuclei with less being
detected in cytoplasmic space (Fig. 4C,F,I) suggesting
programmed cell death [50–53]. The time-dependent
development of the p85 fragment was correlated
with morphological changes in cellular nuclei,
which became condensed and spherical by 4 hr post-
treatment.

DISCUSSION

In our previous study, we conjugated an amine-
reactive fluorescein-based dye to the inhibitor core 1
and demonstrated that this conjugate selectively
labeled PSMAþ cells [35]. Furthermore, we confirmed
that upon binding to PSMA on these cells, the conjugate
was internalized, presumably through the clathrin and
filamin associated mechanism responsible for PSMA
internalization [54–56]. We observed that the internal-
ization of this fluorescent conjugate was time-depend-
ent, detectable as early as 30 min after incubation with
maximum internalization occurring by 150 min at 378C.
As a follow up to this preliminary work, we explored
the concept that peptidomimetic PSMA inhibitor 1
could be coupled to a PS for PDT applications in this
present study. To this end, the PSMA inhibitor 1 was
coupled to the porphyrinic PS Ppa (Fig. 1). The
resulting Ppa-conjugate 2 maintained considerable
inhibitory potency for PSMA (IC50 ¼ 102 nM) and
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Fig. 4. CytoimmunofluorescencedetectionofPARPcleavagep85 fragmentfollowingPDTtreatmentwithPpa-conjugate2 (2.5mM).Control
cells (lighttreatmentonly,noPpa-conjugate2applied(A^C).Two-hourpost-PDTtreatment(D^F).Four-hourpost-PDT(G^I).Cellularnuclei
werecounterstainedbyDAPI.A,D,G:DAPI staining.B,E,H:p85staining.C,F,I:mergedDAPIandp85staining.Bar scaleis20mm.
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demonstrated both selective internalization (Supple-
mentary Material) and targeted PDT capabilities
in vitro by selectively inducing apoptosis in PSMAþ
prostate cancer cells (LNCaP).

Aromatic PSs are prone to form non-covalent
aggregates in aqueous media. As a result, this can
lead to diminished singlet oxygen quantum yields
and PDT activities. In addition these aggregates are
less fluorescent than the corresponding monomers.
This problem can be limiting for in vivo PDT
applications [57–59]. Furthermore, small lipophilic PS
molecules, such as Ppa or its methyl ester, can non-
specifically diffuse through cell membranes, and local-
ize in the intracellular membrane system, particularly
the endoplasmic reticulum, Golgi apparatus, lyso-
somes, and mitochondria [36,37]. We hypothesized
that coupling inhibitor core 1 to Ppa would simulta-
neously achieve three goals: promote aqueous solubil-
ity of the PS, diminish non-specific diffusion into cells,
and specifically target the PS to PSMAþ cells.

In vitro PDT treatment of PSMAþ cells using the
Ppa-conjugate 2 resulted in detectable dose-dependent
DNA fragmentation 16 hr post-treatment as deter-
mined by TUNEL assay. Under the same conditions,
a negligible effect was observed at earlier time points
(2, 4, and 8 hr, data not shown) consistent with the
time-dependent process such as apoptosis. While
PSMAþ cells were sensitive to PDT treatment using
Ppa-conjugate 2 (2.5 and 5 mM), PSMA� cells (PC-3)
were unaffected, thus confirming the specificity of
the Ppa-conjugate 2 for PSMAþ cells. In addition,
PDT treatment of both LNCaP and PC-3 cells by
unconjugated Ppa at 2.5 mM resulted in DNA fragmen-
tation detectable in all cells from both cell lines, thus
confirming Ppa’s inherent lack of specificity common to
simple porphyrinic PSs.

Following PDT treatment of LNCaP cells with Ppa-
conjugate 2 (2.5 mM), cell membranes became detect-
ably more permeable by PI staining prior to fixation.
The extent of PI staining was time-dependent being
observable as early as 2 hr post-treatment. In addition,
PARP cleavage was observed by 2 hr following PDT
treatment under the same conditions. The detected
PARP p85 fragment was predominantly localized
within nuclei with less being found in the cytoplasmic
space. The time-dependence of p85 fragment formation
and membrane permeability was concomitant with
morphological changes of cellular nuclei, which
became condensed by 4 hr post-treatment. In summary,
the data from the in vitro PDT experiments are
consistent with an apoptotic mechanism being acti-
vated following PDT treatment with Ppa-conjugate 2
[43,44,50–53].

Based on the data from the in vitro PDT experiments,
a likely sequence of events triggering apoptosis is as

follows: internalization of Ppa-conjugate 2 to endo-
somes or lysomes, production of singlet oxygen and
reactive oxygen species (ROS) upon irradiation,
damage to endosomal or lysomal membranes with
concomitant release of proteinases activating a caspase
cascade pathway toward apoptosis [60,61]. Evidence of
PARP cleavage to the p85 fragment is a strong indicator
that pro-caspase-3 or 7 were activated through an
apoptotic cascade [45,62].

The observation that cells were stained by PI shortly
after PDT treatment is consistent with that observed
with atypical apoptotic cells [49]. The detection of
PARP cleavage and DNA fragmentation in our experi-
ments indicate that the initiation of apoptosis occurred
in PDT-treated LNCaP cells with Ppa-conjugate 2.
However, two other downstream hallmarks of apop-
tosis: phosphatidylserine externalization and DNA
ladder formation were not observed (data not shown)
[63–66]. Therefore, our findings suggest that the
initiated apoptotic sequence did not yet proceed to
late-stage apoptosis as a result of plasma membrane
damage. Similar observations have been reported in
which membrane photodamage has delayed or pre-
vented the apoptotic process [49,67].

Despite being non-specific, Ppa itself is considerably
more phototoxic (LC90¼ 150 nM) than the Ppa-
conjugate 2 [36]. Presumably, this difference is the
result of their differential subcellular localization.
Based on our previous studies with a fluorescein-based
analog, the Ppa-conjugate 2 is presumably internalized
upon binding to extracellular PSMA and is initially
restricted to endosomes via PSMA-mediated endocy-
tosis [35]. The mitochondrion has been proposed to be a
more critical target organelle to effectively induce
apoptosis following PSs-mediated PDT [36]. As such,
our future efforts will be aimed at incorporating motifs
that facilitate PS escape from endosomal or lysosomal
restriction.

In conclusion, we have demonstrated for the
first time that small molecule inhibitors of PSMA when
conjugated with a PS, are capable of initiating apoptosis
upon light treatment. As expected, coupling the
inhibitor core 1 to Ppa diminished non-specific diffu-
sion into cells, and specifically targeted the PS to
PSMAþ cells. This proof-of concept work now serves
as the basis for further development of PDT for
prostate cancer and an alternative to antibody-based
approaches.
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